Math 31 - Homework 4

Due Wednesday, July 17

Note: Any problem labeled as "show" or "prove" should be written up as a formal proof, using complete sentences to convey your ideas.

Easier

1. Determine whether each of the following subsets is a subgroup of the given group. If not, state which of the subgroup axioms fails.
(a) The set of real numbers \mathbb{R}, viewed as a subset of the complex numbers \mathbb{C} (under addition).
(b) The set $\pi \mathbb{Q}$ of rational multiples of π, as a subset of \mathbb{R} (under addition).
(c) The set of $n \times n$ matrices with determinant 2 , as a subset of $\mathrm{GL}_{\mathrm{n}}(\mathbb{R})$.
(d) The set $\left\{i, m_{1}, m_{2}, m_{3}\right\} \subset D_{3}$ of reflections of the equilateral triangle, along with the identity transformation.
2. We proved in class that every subgroup of a cyclic group is cyclic. The following statement is almost the converse of this:
"Let G be a group. If every proper subgroup of G is cyclic, then G is cyclic."
Find a counterexample to the above statement.
3. $[$ Saracino, \#5.10] Prove that any subgroup of an abelian group is abelian.

Medium

4. [Saracino, \#5.14] Let G be a group. If H and K are subgroups of G, show that $H \cap K$ is also a subgroup of G.
5. Let r and s be positive integers, and define

$$
H=\{n r+m s: n, m \in \mathbb{Z}\}
$$

(a) Show that H is a subgroup of \mathbb{Z}.
(b) We saw in class that every subgroup of \mathbb{Z} is cyclic. Therefore, $H=\langle d\rangle$ for some $d \in \mathbb{Z}$. What is this integer d ? Prove that the d you've found is in fact a generator for H.
6. Let X be a set, and recall that S_{X} is the group consisting of the bijections from S to itself, with the binary operation given by composition of functions. (If X is finite, then S_{X} is just the symmetric group on n letters, where X has n elements.) Given $x_{1} \in X$, define

$$
H=\left\{f \in S_{X}: f\left(x_{1}\right)=x_{1}\right\}
$$

Show that $H \leq S_{X}$.
7. [Saracino, \#5.22] Let G be a group. Define

$$
Z(G)=\{a \in G: a x=x a \text { for all } x \in G\}
$$

In other words, the elements of $Z(G)$ are exactly those which commute with every element of G. Prove that $Z(G)$ is a subgroup of G, called the center of G.
8. Show that if H and K are subgroups of an abelian group G, then

$$
\{h k: h \in H \text { and } k \in K\}
$$

is a subgroup of G.
9. [Saracino, \#5.20] We will see in class that if p is a prime number, then the cyclic group \mathbb{Z}_{p} has no proper subgroups as a consequence of Lagrange's theorem. This problem will have you investigate a "converse" to this result.
(a) If G is a finite group which has no proper subgroups (other than $\{e\}$), prove that G must be cyclic.
(b) Extend the result of (a) by showing that if G has no proper subgroups, then G is not only cyclic, but

$$
|G|=p
$$

for some prime number p.

Hard

10. [Saracino, \#5.25 and 5.26] Let G be a group, and let H be a subgroup of G.
(a) Let a be some fixed element of G, and define

$$
a H a^{-1}=\left\{a h a^{-1}: h \in H\right\} .
$$

This set is called the conjugate of H by a. Prove that $a H a^{-1}$ is a subgroup of G.
(b) Define the normalizer of H in G to be

$$
N(H)=\left\{a \in G: a H a^{-1}=H\right\} .
$$

Prove that $N(H)$ is a subgroup of G.

